-
1 integrated voice/data LAN
Information technology: IVDLANУниверсальный русско-английский словарь > integrated voice/data LAN
-
2 Bridge Protocol Data Unit
Универсальный русско-английский словарь > Bridge Protocol Data Unit
-
3 High data Rate IEEE 802.11 Wireless LAN protocol
Универсальный русско-английский словарь > High data Rate IEEE 802.11 Wireless LAN protocol
-
4 рабочая группа IVDLAN
рабочая группа IVDLAN
Разрабатывает стандарт IEEE 802.9 для ЛВС с интеграцией звука и данных.
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
Русско-английский словарь нормативно-технической терминологии > рабочая группа IVDLAN
-
5 коммутационный шкаф структурированной кабельной сети передачи данных ЛВС
Универсальный русско-английский словарь > коммутационный шкаф структурированной кабельной сети передачи данных ЛВС
-
6 система охлаждения ЦОДа
система охлаждения ЦОДа
-
[Интент]т
Система охлаждения для небольшого ЦОДаВымышленная компания (далее Заказчик) попросила предложить систему охлаждения для строящегося коммерческого ЦОДа. В основном зале планируется установить:
- 60 стоек с энергопотреблением по 5 кВт (всего 300 кВт) — все элементы, необходимые для обеспечения требуемой температуры и влажности, должны быть установлены сразу;
- 16 стоек с энергопотреблением по 20 кВт (всего 320 кВт) — это оборудование будет устанавливаться постепенно (по мере необходимости), и средства охлаждения планируется развертывать и задействовать по мере подключения и загрузки стоек.
Заказчик заявил, что предпочтение будет отдано энергоэффективным решениям, поэтому желательно задействовать «зеленые» технологии, в первую очередь фрикулинг (естественное охлаждение наружным воздухом — free cooling), и предоставить расчет окупаемости соответствующей опции (с учетом того, что объект находится в Московской области). Планируемый уровень резервирования — N+1, но возможны и другие варианты — при наличии должного обоснования. Кроме того, Заказчик попросил изначально предусмотреть средства мониторинга энергопотребления с целью оптимизации расхода электроэнергии.
ЧТО ПРОГЛЯДЕЛ ЗАКАЗЧИК
В сформулированной в столь общем виде задаче не учтен ряд существенных деталей, на которые не преминули указать эксперты. Так, Дмитрий Чагаров, руководитель направления вентиляции и кондиционирования компании «Утилекс», заметил, что в задании ничего не сказано о характере нагрузки. Он, как и остальные проектировщики, исходил из предположения, что воздушный поток направлен с фронтальной части стоек назад, но, как известно, некоторые коммутаторы спроектированы для охлаждения сбоку — для них придется использовать специальные боковые блоки распределения воздушного потока.
В задании сказано о размещении всех стоек (5 и 20 кВт) в основном зале, однако некоторые эксперты настоятельно рекомендуют выделить отдельную зону для высоконагруженных стоек. По словам Александра Мартынюка, генерального директора консалтинговой компании «Ди Си квадрат», «это будет правильнее и с точки зрения проектирования, и с позиций удобства эксплуатации». Такое выделение (изоляция осуществляется при помощи выгородок) предусмотрено, например, в проекте компании «Комплит»: Владислав Яковенко, начальник отдела инфраструктурных проектов, уверен, что подобное решение, во-первых, облегчит обслуживание оборудования, а во-вторых, позволит использовать различные технологии холодоснабжения в разных зонах. Впрочем, большинство проектировщиков не испытали особых проблем при решении задачи по отводу тепла от стоек 5 и 20 кВт, установленных в одном помещении.
Один из первых вопросов, с которым Заказчик обратился к будущему партнеру, был связан с фальшполом: «Необходим ли он вообще, и если нужен, то какой высоты?». Александр Мартынюк указал, что грамотный расчет высоты фальшпола возможен только при условии предоставления дополнительной информации: о типе стоек (как в них будет организована подача охлаждающего воздуха?); об организации кабельной проводки (под полом или потолком? сколько кабелей? какого диаметра?); об особенностях помещения (высота потолков, соотношение длин стен, наличие выступов и опорных колонн) и т. д. Он советует выполнить температурно-климатическое моделирование помещения с учетом вышеперечисленных параметров и, если потребуется, уточняющих данных. В результате можно будет подготовить рекомендации в отношении оптимальной высоты фальшпола, а также дать оценку целесообразности размещения в одном зале стоек с разной энергонагруженностью.
Что ж, мы действительно не предоставили всей информации, необходимой для подобного моделирования, и проектировщикам пришлось довольствоваться скудными исходными данными. И все же, надеемся, представленные решения окажутся интересными и полезными широкому кругу заказчиков. Им останется только «подогнать» решения «под себя».
«КЛАССИКА» ОХЛАЖДЕНИЯ
Для снятия тепла со стоек при нагрузке 5 кВт большинство проектировщиков предложили самый распространенный на сегодня вариант — установку шкафных прецизионных кондиционеров, подающих холодный воздух в пространство под фальшполом. Подвод воздуха к оборудованию осуществляется в зоне холодных коридоров через перфорированные плиты или воздухораспределительные решетки фальшпола, а отвод воздуха от кондиционеров — из зоны горячих коридоров через верхнюю часть зала или пространство навесного потолка (см. Рисунок 1). Такая схема может быть реализована только при наличии фальшпола достаточной высоты
В вопросе выбора места для установки шкафных кондиционеров единство мнений отсутствует, многие указали на возможность их размещения как в серверном зале, так и в соседнем помещении. Алексей Карпинский, директор департамента инженерных систем компании «Астерос», уверен, что для низконагруженных стоек лучшим решением будет вынос «тяжелой инженерии» за пределы серверного зала (см. Рисунок 2) — тогда для обслуживания кондиционеров внутрь зала входить не придется. «Это повышает надежность работы оборудования, ведь, как известно, наиболее часто оно выходит из строя вследствие человеческого фактора, — объясняет он. — Причем помещение с кондиционерами может быть совершенно не связанным с машинным залом и располагаться, например, через коридор или на другом этаже».
Если стойки мощностью 5 и 20 кВт устанавливаются в одном помещении, Александр Ласый, заместитель директора департамента интеллектуальных зданий компании «Крок», рекомендует организовать физическое разделение горячих и холодных коридоров. В ситуации, когда для высоконагруженных стоек выделяется отдельное помещение, подобного разделения для стоек на 5 кВт не требуется.
ФРЕОН ИЛИ ВОДА
Шкафные кондиционеры на рынке представлены как во фреоновом исполнении, так и в вариантах с водяным охлаждением. При использовании фреоновых кондиционеров на крыше или прилегающей территории необходимо предусмотреть место для установки конденсаторных блоков, а при водяном охлаждении потребуется место под насосную и водоохлаждающие машины (чиллеры).
Специалисты компании «АМДтехнологии» представили Заказчику сравнение различных вариантов фреоновых и водяных систем кондиционирования. Наиболее бюджетный вариант предусматривает установку обычных шкафных фреоновых кондиционеров HPM M50 UA с подачей холодного воздуха под фальшпол. Примерно на четверть дороже обойдутся модели кондиционеров с цифровым спиральным компрессором и электронным терморасширительным вентилем (HPM D50 UA, Digital). Мощность кондиционеров регулируется в зависимости от температуры в помещении, это позволяет добиться 12-процентной экономии электроэнергии, а также уменьшить количество пусков и останова компрессора, что повышает срок службы системы. В случае отсутствия на объекте фальшпола (или его недостаточной высоты) предложен более дорогой по начальным вложениям, но экономичный в эксплуатации вариант с внутрирядными фреоновыми кондиционерами.
Как показывает представленный анализ, фреоновые кондиционеры менее эффективны по сравнению с системой водяного охлаждения. При этом, о чем напоминает Виктор Гаврилов, технический директор «АМДтехнологий», фреоновая система имеет ограничение по длине трубопровода и перепаду высот между внутренними и наружными блоками (эквивалентная общая длина трассы фреонопровода не должна превышать 50 м, а рекомендуемый перепад по высоте — 30 м); у водяной системы таких ограничений нет, поэтому ее можно приспособить к любым особенностям здания и прилегающей территории. Важно также помнить, что при применении фреоновой системы перспективы развития (увеличение плотности энергопотребления) существенно ограничены, тогда как при закладке необходимой инфраструктуры подачи холодной воды к стойкам (трубопроводы, насосы, арматура) нагрузку на стойку можно впоследствии увеличивать до 30 кВт и выше, не прибегая к капитальной реконструкции серверного помещения.
К факторам, которые могут определить выбор в пользу фреоновых кондиционеров, можно отнести отсутствие места на улице (например из-за невозможности обеспечить пожарный проезд) или на кровле (вследствие особенностей конструкции или ее недостаточной несущей способности) для монтажа моноблочных чиллеров наружной установки. При этом большинство экспертов единодушно высказывают мнение, что при указанных мощностях решение на воде экономически целесообразнее и проще в реализации. Кроме того, при использовании воды и/или этиленгликолевой смеси в качестве холодоносителя можно задействовать типовые функции фрикулинга в чиллерах.
Впрочем, функции фрикулинга возможно задействовать и во фреоновых кондиционерах. Такие варианты указаны в предложениях компаний RC Group и «Инженерное бюро ’’Хоссер‘‘», где используются фреоновые кондиционеры со встроенными конденсаторами водяного охлаждения и внешними теплообменниками с функцией фрикулинга (сухие градирни). Специалисты RC Group сразу отказались от варианта с установкой кондиционеров с выносными конденсаторами воздушного охлаждения, поскольку он не соответствует требованию Заказчика задействовать режим фрикулинга. Помимо уже названного они предложили решение на основе кондиционеров, работающих на охлажденной воде. Интересно отметить, что и проектировшики «Инженерного бюро ’’Хоссер‘‘» разработали второй вариант на воде.
Если компания «АМДтехнологии» предложила для стоек на 5 кВт решение на базе внутрирядных кондиционеров только как один из возможных вариантов, то APC by Schneider Electric (см. Рисунок 3), а также один из партнеров этого производителя, компания «Утилекс», отдают предпочтение кондиционерам, устанавливаемым в ряды стоек. В обоих решениях предложено изолировать горячий коридор с помощью системы HACS (см. Рисунок 4). «Для эффективного охлаждения необходимо снизить потери при транспортировке холодного воздуха, поэтому системы кондиционирования лучше установить рядом с нагрузкой. Размещение кондиционеров в отдельном помещении — такая модель применялась в советских вычислительных центрах — в данном случае менее эффективно», — считает Дмитрий Чагаров. В случае использования внутрирядных кондиционеров фальшпол уже не является необходимостью, хотя в проекте «Утилекса» он предусмотрен — для прокладки трасс холодоснабжения, электропитания и СКС.
Михаил Балкаров, системный инженер компании APC by Schneider Electric, отмечает, что при отсутствии фальшпола трубы можно проложить либо в штробах, либо сверху, предусмотрев дополнительный уровень защиты в виде лотков или коробов для контролируемого слива возможных протечек. Если же фальшпол предусматривается, то его рекомендуемая высота составляет не менее 40 см — из соображений удобства прокладки труб.
ЧИЛЛЕР И ЕГО «ОБВЯЗКА»
В большинстве проектов предусматривается установка внешнего чиллера и организация двухконтурной системы холодоснабжения. Во внешнем контуре, связывающем чиллеры и промежуточные теплообменники, холодоносителем служит водный раствор этиленгликоля, а во внутреннем — между теплообменниками и кондиционерами (шкафными и/или внутрирядными) — циркулирует уже чистая вода. Необходимость использования этиленгликоля во внешнем контуре легко объяснима — это вещество зимой не замерзает. У Заказчика возник резонный вопрос: зачем нужен второй контур, и почему нельзя организовать всего один — ведь в этом случае КПД будет выше?
По словам Владислава Яковенко, двухконтурная схема позволяет снизить объем дорогого холодоносителя (этиленгликоля) и является более экологичной. Этиленгликоль — ядовитое, химически активное вещество, и если протечка случится внутри помещения ЦОД, ликвидация последствий такой аварии станет серьезной проблемой для службы эксплуатации. Следует также учитывать, что при содержании гликоля в растворе холодоносителя на уровне 40% потребуются более мощные насосы (из-за высокой вязкости раствора), поэтому потребление энергии и, соответственно, эксплуатационные расходы увеличатся. Наконец, требование к монтажу системы без гликоля гораздо ниже, а эксплуатировать ее проще.
При использовании чиллеров функцию «бесперебойного охлаждения» реализовать довольно просто: при возникновении перебоев с подачей электроэнергии система способна обеспечить охлаждение серверной до запуска дизеля или корректного выключения серверов за счет холодной воды, запасенной в баках-аккумуляторах. Как отмечает Виктор Гаврилов, реализация подобной схемы позволяет удержать изменение градиента температуры в допустимых пределах (ведущие производители серверов требуют, чтобы скорость изменения температуры составляла не более 50С/час, а увеличение этой скорости может привести к поломке серверного оборудования, что особенно часто происходит при возобновлении охлаждения в результате резкого снижения температуры). При пропадании электропитания для поддержания работы чиллерной системы кондиционирования необходимо только обеспечить функционирование перекачивающих насосов и вентиляторов кондиционеров — потребление от ИБП сводится к минимуму. Для классических фреоновых систем необходимо обеспечить питанием весь комплекс целиком (при этом все компрессоры должны быть оснащены функцией «мягкого запуска»), поэтому требуются кондиционеры и ИБП более дорогой комплектации.
КОГДА РАСТЕТ ПЛОТНОСТЬ
Большинство предложенных Заказчику решений для охлаждения высоконагруженных стоек (20 кВт) предусматривает использование внутрирядных кондиционеров. Как полагает Александр Ласый, основная сложность при отводе от стойки 20 кВт тепла с помощью классической схемы охлаждения, базирующейся на шкафных кондиционерах, связана с подачей охлажденного воздуха из-под фальшпольного пространства и доставкой его до тепловыделяющего оборудования. «Значительные перепады давления на перфорированных решетках фальшпола и высокие скорости движения воздуха создают неравномерный воздушный поток в зоне перед стойками даже при разделении горячих и холодных коридоров, — отмечает он. — Это приводит к неравномерному охлаждению стоек и их перегреву. В случае переменной загрузки стоек возникает необходимость перенастраивать систему воздухораспределения через фальшпол, что довольно затруднительно».
Впрочем, некоторые компании «рискнули» предложить для стоек на 20 кВт систему, основанную на тех же принципах, что применяются для стоек на 5кВт, — подачей холодного воздуха под фальшпол. По словам Сергея Бондарева, руководителя отдела продаж «Вайсс Климатехник», его опыт показывает, что установка дополнительных решеток вокруг стойки для увеличения площади сечения, через которое поступает холодный воздух (а значит и его объема), позволяет снимать тепловую нагрузку в 20 кВт. Решение этой компании отличается от других проектов реализацией фрикулинга: конструкция кондиционеров Deltaclima FC производства Weiss Klimatechnik позволяет подводить к ним холодный воздух прямо с улицы.
Интересное решение предложила компания «ЮниКонд», партнер итальянской Uniflair: классическая система охлаждения через фальшпол дополняется оборудованными вентиляторами модулями «активного пола», которые устанавливаются вместо обычных плиток фальшпола. По утверждению специалистов «ЮниКонд», такие модули позволяют существенно увеличить объемы регулируемых потоков воздуха: до 4500 м3/час вместо 800–1000 м3/час от обычной решетки 600х600 мм. Они также отмечают, что просто установить вентилятор в подпольном пространстве недостаточно для обеспечения гарантированного охлаждения серверных стоек. Важно правильно организовать воздушный поток как по давлению, так и по направлению воздуха, чтобы обеспечить подачу воздуха не только в верхнюю часть стойки, но и, в случае необходимости, в ее нижнюю часть. Для этого панель «активного пола» помимо вентилятора комплектуется процессором, датчиками температуры и поворотными ламелями (см. Рисунок 5). Применение модулей «активного пола» без дополнительной изоляции потоков воздуха позволяет увеличить мощность стойки до 15 кВт, а при герметизации холодного коридора (в «ЮниКонд» это решение называют «холодным бассейном») — до 25 кВт.
Как уже говорилось, большинство проектировщиков рекомендовали для стоек на 20 кВт системы с внутрирядным охлаждением и изоляцию потоков горячего и холодного воздуха. Как отмечает Александр Ласый, использование высоконагруженных стоек в сочетании с внутрирядными кондиционерами позволяет увеличить плотность размещения серверного оборудования и сократить пространство (коридоры, проходы) для его обслуживания. Взаимное расположение серверных стоек и кондиционеров в этом случае сводит к минимуму неравномерность распределения холода в аварийной ситуации.
Выбор различных вариантов закрытой архитектуры циркуляции воздуха предложила компания «Астерос»: от изоляции холодного (решение от Knuеrr и Emerson) или горячего коридора (APC) до изоляции воздушных потоков на уровне стойки (Rittal, APC, Emerson, Knuеrr). Причем, как отмечается в проекте, 16 высоконагруженных стоек можно разместить и в отдельном помещении, и в общем зале. В качестве вариантов кондиционерного оборудования специалисты «Астерос» рассмотрели возможность установки внутрирядных кондиционеров APC InRowRP/RD (с изоляцией горячего коридора), Emerson CR040RC и закрытых решений на базе оборудования Knuеrr CoolLoop — во всех этих случаях обеспечивается резервирование на уровне ряда по схеме N+1. Еще один вариант — рядные кондиционеры LCP компании Rittal, состоящие из трех охлаждающих модулей, каждый из которых можно заменить в «горячем» режиме. В полной мере доказав свою «вендоронезависимость», интеграторы «Астерос» все же отметили, что при использовании монобрендового решения, например на базе продуктов Emerson, все элементы могут быть объединены в единую локальную сеть, что позволит оптимизировать работу системы и снизить расход энергии.
Как полагают в «Астерос», размещать трубопроводы в подпотолочной зоне нежелательно, поскольку при наличии подвесного потолка обнаружить и предотвратить протечку и образование конденсата очень сложно. Поэтому они рекомендуют обустроить фальшпол высотой до 300 мм — этого достаточно для прокладки кабельной продукции и трубопроводов холодоснабжения. Так же как и в основном полу, здесь необходимо предусмотреть средства для сбора жидкости при возникновении аварийных ситуаций (гидроизоляция, приямки, разуклонка и т. д.).
Как и шкафные кондиционеры, внутрирядные доводчики выпускаются не только в водяном, но и во фреоновом исполнении. Например, новинка компании RC Group — внутрирядные системы охлаждения Coolside — поставляется в следующих вариантах: с фреоновыми внутренними блоками, с внутренними блоками на охлажденной воде, с одним наружным и одним внутренним фреоновым блоком, а также с одним наружным и несколькими внутренними фреоновыми блоками. Учитывая пожелание Заказчика относительно энергосбережения, для данного проекта выбраны системы Coolside, работающие на охлажденной воде, получаемой от чиллера. Число чиллеров, установленных на первом этапе проекта, придется вдвое увеличить.
Для высокоплотных стоек компания «АМДтехнологии» разработала несколько вариантов решений — в зависимости от концепции, принятой для стоек на 5 кВт. Если Заказчик выберет бюджетный вариант (фреоновые кондиционеры), то в стойках на 20 кВт предлагается установить рядные кондиционеры-доводчики XDH, а в качестве холодильной машины — чиллер внутренней установки с выносными конденсаторами XDC, обеспечивающий циркуляцию холодоносителя для доводчиков XDH. Если же Заказчик с самого начала ориентируется на чиллеры, то рекомендуется добавить еще один чиллер SBH 030 и также использовать кондиционеры-доводчики XDH. Чтобы «развязать» чиллерную воду и фреон 134, используемый кондиционерами XDH, применяются специальные гидравлические модули XDP (см. Рисунок 6).
Специалисты самого производителя — компании Emerson Network — предусмотрели только один вариант, основанный на развитии чиллерной системы, предложенной для стоек на 5 кВт. Они отмечают, что использование в системе Liebert XD фреона R134 исключает ввод воды в помещение ЦОД. В основу работы этой системы положено свойство жидкостей поглощать тепло при испарении. Жидкий холодоноситель, нагнетаемый насосом, испаряется в теплообменниках блоков охлаждения XDH, а затем поступает в модуль XDP, где вновь превращается в жидкость в результате процесса конденсации. Таким образом, компрессионный цикл, присутствующий в традиционных системах, исключается. Даже если случится утечка жидкости, экологически безвредный холодоноситель просто испарится, не причинив никакого вреда оборудованию.
Данная схема предполагает возможность поэтапного ввода оборудования: по мере увеличения мощности нагрузки устанавливаются дополнительные доводчики, которые подсоединяются к существующей системе трубопроводов при помощи гибких подводок и быстроразъемных соединений, что не требует остановки системы кондиционирования.
СПЕЦШКАФЫ
Как считает Александр Шапиро, начальник отдела инженерных систем «Корпорации ЮНИ», тепловыделение 18–20 кВт на шкаф — это примерно та граница, когда тепло можно отвести за разумную цену традиционными методами (с применением внутрирядных и/или подпотолочных доводчиков, выгораживания рядов и т. п.). При более высокой плотности энергопотребления выгоднее использовать закрытые серверные шкафы с локальными системами водяного охлаждения. Желание применить для отвода тепла от второй группы шкафов традиционные методы объяснимо, но, как предупреждает специалист «Корпорации ЮНИ», появление в зале новых энергоемких шкафов потребует монтажа дополнительных холодильных машин, изменения конфигурации выгородок, контроля за изменившейся «тепловой картиной». Проведение таких («грязных») работ в действующем ЦОДе не целесообразно. Поэтому в качестве энергоемких шкафов специалисты «Корпорации ЮНИ» предложили использовать закрытые серверные шкафы CoolLoop с отводом тепла водой производства Knuеrr в варианте с тремя модулями охлаждения (10 кВт каждый, N+1). Подобный вариант предусмотрели и некоторые другие проектировщики.
Минусы такого решения связаны с повышением стоимости проекта (CAPEX) и необходимостью заведения воды в серверный зал. Главный плюс — в отличной масштабируемости: установка новых шкафов не добавляет тепловой нагрузки в зале и не приводит к перераспределению тепла, а подключение шкафа к системе холодоснабжения Заказчик может выполнять своими силами. Кроме того, он имеет возможность путем добавления вентиляционного модуля отвести от шкафа еще 10 кВт тепла (всего 30 кВт при сохранении резервирования N+1) — фактически это резерв для роста. Наконец, как утверждает Александр Шапиро, с точки зрения энергосбережения (OPEX) данное решение является наиболее эффективным.
В проекте «Корпорации ЮНИ» шкафы CoolLoop предполагается установить в общем серверном зале с учетом принципа чередования горячих и холодного коридоров, чем гарантируется работоспособность шкафов при аварийном или технологическом открывании дверей. Причем общее кондиционирование воздуха в зоне энергоемких шкафов обеспечивается аналогично основной зоне серверного зала за одним исключением — запас холода составляет 20–30 кВт. Кондиционеры рекомендовано установить в отдельном помещении, смежном с серверным залом и залом размещения ИБП (см. Рисунок 7). Такая компоновка имеет ряд преимуществ: во-первых, тем самым разграничиваются зоны ответственности службы кондиционирования и ИТ-служб (сотрудникам службы кондиционирования нет необходимости заходить в серверный зал); во-вторых, из зоны размещения кондиционеров обеспечивается подача/забор воздуха как в серверный зал, так и в зал ИБП; в-третьих, сокращается число резервных кондиционеров (резерв общий).
ФРИКУЛИНГ И ЭНЕРГОЭФФЕКТИВНОСТЬ
Как и просил Заказчик, все проектировщики включили функцию фрикулинга в свои решения, но мало кто рассчитал энергетическую эффективность ее использования. Такой расчет провел Михаил Балкаров из APC by Schneider Electric. Выделив три режима работы системы охлаждения — с температурой гликолевого контура 22, 20 и 7°С (режим фрикулинга), — для каждого он указал ее потребление (в процентах от полезной нагрузки) и коэффициент энергетической эффективности (Energy Efficiency Ratio, EER), который определяется как отношение холодопроизводительности кондиционера к потребляемой им мощности. Для нагрузки в 600 кВт среднегодовое потребление предложенной АРС системы охлаждения оказалось равным 66 кВт с функцией фрикулинга и 116 кВт без таковой. Разница 50 кВт в год дает экономию 438 тыс. кВт*ч.
Объясняя высокую энергоэффективность предложенного решения, Михаил Балкаров отмечает, что в первую очередь эти показатели обусловлены выбором чиллеров с высоким EER и применением эффективных внутренних блоков — по его данным, внутрирядные модели кондиционеров в сочетании с изоляцией горячего коридора обеспечивают примерно двукратную экономию по сравнению с наилучшими фальшпольными вариантами и полуторакратную экономию по сравнению с решениями, где используется контейнеризация холодного коридора. Вклад же собственно фрикулинга вторичен — именно поэтому рабочая температура воды выбрана не самой высокой (всего 12°С).
По расчетам специалистов «Комплит», в условиях Московской области предложенное ими решение с функцией фрикулинга за год позволяет снизить расход электроэнергии примерно на 50%. Данная функция (в проекте «Комплит») активизируется при температуре около +7°С, при понижении температуры наружного воздуха вклад фрикулинга в холодопроизводительность будет возрастать. Полностью система выходит на режим экономии при температуре ниже -5°С.
Специалисты «Инженерного бюро ’’Хоссер‘‘» предложили расчет экономии, которую дает применение кондиционеров с функцией фрикулинга (модель ALD-702-GE) по сравнению с использованием устройств, не оснащенных такой функцией (модель ASD-802-A). Как и просил Заказчик, расчет привязан к Московскому региону (см. Рисунок 8).
Как отмечает Виктор Гаврилов, энергопотребление в летний период (при максимальной загрузке) у фреоновой системы ниже, чем у чиллерной, но при температуре менее 14°С, энергопотребление последней снижается, что обусловлено работой фрикулинга. Эта функция позволяет существенно повысить срок эксплуатации и надежность системы, так как в зимний период компрессоры практически не работают — в связи с этим ресурс работы чиллерных систем, как минимум, в полтора раза больше чем у фреоновых.
К преимуществам предложенных Заказчику чиллеров Emerson Виктор Гаврилов относит возможность их объединения в единую сеть управления и использования функции каскадной работы холодильных машин в режиме фрикулинга. Более того, разработанная компанией Emerson система Supersaver позволяет управлять температурой холодоносителя в соответствии с изменениями тепловой нагрузки, что увеличивает период времени, в течение которого возможно функционирование системы в этом режиме. По данным Emerson, при установке чиллеров на 330 кВт режим фрикулинга позволяет сэкономить 45% электроэнергии, каскадное включение — 5%, технология Supersaver — еще 16%, итого — 66%.
Но не все столь оптимистичны в отношении фрикулинга. Александр Шапиро напоминает, что в нашу страну культура использования фрикулинга в значительной мере принесена с Запада, между тем как потребительская стоимость этой опции во многом зависит от стоимости электроэнергии, а на сегодняшний день в России и Западной Европе цены серьезно различаются. «Опция фрикулинга ощутимо дорога, в России же достаточно часто ИТ-проекты планируются с дефицитом бюджета. Поэтому Заказчик вынужден выбирать: либо обеспечить планируемые технические показатели ЦОД путем простого решения (не думая о проблеме увеличения OPEX), либо «ломать копья» в попытке доказать целесообразность фрикулинга, соглашаясь на снижение параметров ЦОД. В большинстве случаев выбор делается в пользу первого варианта», — заключает он.
Среди предложенных Заказчику более полутора десятков решений одинаковых нет — даже те, что построены на аналогичных компонентах одного производителя, имеют свои особенности. Это говорит о том, что задачи, связанные с охлаждением, относятся к числу наиболее сложных, и типовые отработанные решения по сути отсутствуют. Тем не менее, среди представленных вариантов Заказчик наверняка сможет выбрать наиболее подходящий с учетом предпочтений в части CAPEX/OPEX и планов по дальнейшему развитию ЦОД.
Александр Барсков — ведущий редактор «Журнала сетевых решений/LAN»
[ http://www.osp.ru/lan/2010/05/13002554/]
Тематики
EN
Русско-английский словарь нормативно-технической терминологии > система охлаждения ЦОДа
-
7 локальная сеть
1. local networkтопологическая схема сети; топология сети — network topology
2. LAN3. local area networkраспознающая сеть; схема распознавания — recognition network
общедоступная сеть; сеть общего пользования — public network
-
8 локальная сеть
1) Computers: LAN (local area network), local area net, local area network (LAN)2) Engineering: local data-processing network, local-area network3) Accounting: local area network (сокр. LAN), local area network (противоположным является WAN wide area network - сеть широкого доступа)5) Oil: ethernet, area network6) Sakhalin energy glossary: local area network (system permitting a number of PCs to share centralized software and files by means of a file server and hard wiring) (LAN; ЛАН)7) Automation: (информационная) LAN, communications area, (компьютерная) local (area) network, (информационная) local area network, (компьютерная) localized network8) Makarov: (вычислительная) local area network, (вычислительная) local data processing network9) Electrical engineering: local network (передачи данных)10) Microsoft: company network -
9 модель расширенного канала
- VLD
- RTI
- NRZ-M
- NRZ-1
- NRZ Space
- NRZ
- MTTR
- MTBF
- MSB
- LSB
- LLC
- LED
- Laser
- LAN
- INCITS
- HEX
- EEPROM
- EDI
- ECI
- CSUM
- CRC
- BER
- BCD
- ASC
- ANSI
- ANS
01.05.24 модель расширенного канала [ extended channel model]: Система кодирования и передачи как байтов с данными сообщения, так и управляющей информации о сообщении, в пределах которой декодер работает в режиме расширенного канала.
Примечание - Управляющая информация передается с использованием управляющих последовательностей интерпретации в расширенном канале (ECI).
<2>4 Сокращения1)
1)Следует учитывать, что в соответствии с оригиналом ИСО/МЭК 19762-1 в данном разделе присутствует сокращение CSMA/CD, которое в тексте стандарта не используется.
Кроме того, сокращения отсортированы в алфавитном порядке.
Al
Идентификатор применения [application identifier]
ANS
Американский национальный стандарт [American National Standard]
ANSI
Американский национальный институт стандартов [American National Standards Institute]
ASC
Аккредитованный комитет по стандартам [Accredited Standards Committee]
вес
Контрольный знак блока [block check character]
BCD
Двоично-десятичный код (ДДК) [binary coded decimal]
BER
Коэффициент ошибок по битам [bit error rate]
CRC
Контроль циклическим избыточным кодом [cyclic redundancy check]
CSMA/CD
Коллективный доступ с контролем несущей и обнаружением конфликтов [carrier sense multiple access with collision detection network]
CSUM
Контрольная сумма [check sum]
Dl
Идентификатор данных [data identifier]
ECI
Интерпретация в расширенном канале [extended channel interpretation]
EDI
Электронный обмен данными (ЭОД) [electronic data interchange]
EEPROM
Электрически стираемое программируемое постоянное запоминающее устройство [electrically erasable programmable read only memory]
HEX
Шестнадцатеричная система счисления [hexadecimal]
INCITS
Международный комитет по стандартам информационных технологий [International Committee for Information Technology Standards]
LAN
Локальная вычислительная сеть [local area network]
Laser
Усиление света с помощью вынужденного излучения [light amplification by the stimulated emission of radiation]
LED
Светоизлучающий диод [light emitting diode]
LLC
Управление логической связью [logical link control]
LSB
Младший значащий бит [least significant bit]
МНЮ
Аккредитованный комитет по отраслевым стандартам в сфере обработки грузов [Accredited Standards Committee for the Material Handling Industry]
MSB
Старший значащий бит [most significant bit]
MTBF
Средняя наработка на отказ [mean time between failures]
MTTR
Среднее время ремонта [mean time to repair]
NRZ
Без возвращения к нулю [non-return to zero code]
NRZ Space
Кодирование без возвращения к нулю с перепадом на нулях [non-return to zero-space]
NRZ-1
Кодирование без возвращения к нулю с перепадом на единицах [non-return to zero invert on ones]
NRZ-M
Запись без возвращения к нулю (метка) [non-return to zero (mark) recording]
RTI
Возвратное транспортное упаковочное средство [returnable transport item]
RZ
Кодирование с возвратом к нулю [return to zero]
VLD
Светоизлучающий лазерный диод [visible laser diode]
<2>Библиография
[1]
ИСО/МЭК Руководство 2
Стандартизация и связанная с ней деятельность. Общий словарь
(ISO/IECGuide2)
(Standardization and related activities - General vocabulary)
[2]
ИСО/МЭК 2382-1
Информационные технологии. Словарь - Часть 1. Основные термины
(ISO/IEC 2382-1)
(Information technology - Vocabulary - Part 1: Fundamental terms)
[3]
ИСО/МЭК 2382-4
Информационные технологии. Словарь - Часть 4. Организация данных
(ISO/IEC 2382-4)
(Information technology - Vocabulary - Part 4: Organization of data)
[4]
ИСО/МЭК 2382-9
Информационные технологии. Словарь. Часть 9. Передача данных
(ISO/IEC 2382-9)
(Information technology - Vocabulary - Part 9: Data communication)
[5]
ИСО/МЭК 2382-16
Информационные технологии. Словарь. Часть 16. Теория информации
(ISO/IEC 2382-16)
(Information technology - Vocabulary - Part 16: Information theory)
[6]
ИСО/МЭК 19762-2
Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД)
(ISO/IEC 19762-2)
(Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 2: Optically readable media (ORM))
[7]
ИСО/МЭК 19762-3
Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 3. Радиочастотная идентификация (РЧИ)
(ISO/IEC 19762-3)
(Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 3: Radio frequency identification (RFID)
[8]
ИСО/МЭК 19762-4
Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 4. Основные термины в области радиосвязи
(ISO/IEC 19762-4)
(Information technology-Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 4: General terms relating to radio communications)
[9]
ИСО/МЭК 19762-5
Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 5. Системы определения места нахождения
(ISO/IEC 19762-5)
(Information technology - Automatic identification and data capture (AIDC) techniques - Harmonized vocabulary - Part 5: Locating systems)
[10]
МЭК 60050-191
Международный Электротехнический Словарь. Глава 191. Надежность и качество услуг
(IEC 60050-191)
(International Electrotechnical Vocabulary - Chapter 191: Dependability and quality of Service)
[11]
МЭК 60050-702
Международный Электротехнический Словарь. Глава 702. Колебания, сигналы и соответствующие устройства
(IEC 60050-702)
(International Electrotechnical Vocabulary - Chapter 702: Oscillations, signals and related devices)
[12]
МЭК 60050-704
Международный Электротехнический словарь. Глава 704. Техника передачи
(IEC 60050-704)
(International Electrotechnical Vocabulary. Chapter 704: Transmission)
[13]
МЭК 60050-845
Международный электротехнический словарь. Глава 845. Освещение
(IEC 60050-845)
(International Electrotechnical Vocabulary - Chapter 845: Lighting)
<2>
Источник: ГОСТ Р ИСО/МЭК 19762-1-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 1. Общие термины в области АИСД оригинал документа
Русско-английский словарь нормативно-технической терминологии > модель расширенного канала
-
10 Bitmap graphics
File extension: ART (B&W, many - First Publisher - Xara Studio), ATK (Andrew Toolkit Raster Object file), B&W (black and white, atari - mac), BBNNG (BBN BitGraph terminal Display Pixel Data (DPD) sequence), BGA (OS/2), BIF (b&w Binary Image Format, Image Capture board), BIT (X11), BM (1bit text, X Window BitMap), BMP (PC Paintbrush - many), BOB (BOB Image file), BW (SGI image), BYU (Movie BYU format), CALS (Computer Aided Acquisition and Logistics Support), CCRF (Calcomp Raster File, B&W or 1bit CMYK for printers), CEG (Tempra Show - Edsun Continuous Edge Graphics), CM (8bit, Unix Puzzle), CMU (Carnegie Mellon University (CMU) Window Manager bitmap Formats), CMUWM (Carnegie Mellon University (CMU) Window Manager bitmap Formats), CMYK (raw cyan magenta yellow and black bytes), CORE (Core Software Tech CORE IDC file), CPI (Colorlab Processed Image), CSLM (Zeiss CSLM file), CUBE (Cubicomp/Vertigo image file, Cubicomp PictureMaker), CUBI (Cubicomp/Vertigo image file, Cubicomp PictureMaker), CVS (Canvas drawing), DCX (Multipage PCX - many faxes), DDB, DDIF (DEC DDIF file), DF (Hierarchical Data File, NCSA), DIB (Device Independent Bitmap), DPX (Digital Moving Picture Exchange, Cineon DPX file), EIDI (Electric Image EIDI file), ERM, FAC (UNIX Faceserver image file, Usenix FACE), FACE (UNIX Faceserver image file, Usenix FACE), FAL (image header information, Q0 format), FOP (Freedom of Press), FPX (Kodak FlashPix), G3 (Group 3 FAX file), GIF (GIF87A/GIF89A CompuServe Graphics Interchange Format), GIFF (GIF87A/GIF89A CompuServe Graphics Interchange Format), GIS (Erdas gray-scale image), GM (Autologic files), GM2 (mode 2 black/white, Autologic files), GO (GraphOn graphics file), GOULD (Gould scanner file), GRAY (raw gray bytes), HIPS (HIPS file), HRF (Hitachi Raster Format, CADCore), IAX (IBM Image Access eXecutive file), IC1 (Atari Image), ICR (NCSA Telnet Interactive Color Raster graphic file), ILBM (Amiga Interleaved Bitmap format), IM (Sun raster file), IM1 (1bit, Sun raster file), IM32 (32bit, Sun raster file), IM8 (8bit, Sun raster file), IRIS (Silicon Graphics RGB image file), IVB (Truevision Targa format), JIF (JPEG File Interchange Format), JPC (Japan Picture format), JPE (JPEG Joint Photography Experts Group format), JPEG (JPEG Joint Photography Experts Group format), JTF (JPEG Tagged Interchange Format), LAN (Erdas true colour image), LANDSAT (EOSAT's Landsat Thematic Mapper data file), LBM (Amiga Interleaved Bitmap format, Deluxe Paint), LISPM (Lisp Machine file), LJ (HP LaserJet graphics file), LTM (EOSAT's Landsat Thematic Mapper data file), MBFAVS (AVS X image file), MBFX (AVS X image file), MIFF (Magick Image File Format), MNG (Multiple-image Network Graphics), MPT (Multipage TIFF), NCSA (Hierarchical Data File, NCSA), NEO (Atari NeoChrome image file), NEWS (NeWS image file), NRF (Neutral Raster File), PAC (Atari STAD Image), PAT (1bit, Patent data, US Patent and Trademark Office), PDA, PICT2 (Apple Macintosh PICT file), PJ (HP PaintJet PCL graphics file), PJXL (HP PaintJet XL PCL graphics file), PNF (Portable Network graphics Frame, standalone stream), PNG (Portable Network Graphics), PNM (PBM Portable aNyMap), PR (Sun raster file), PRF (Pixel Run Format, Improces - Fastgraph), PSE (IBM printer Page SEgment), PSEG (IBM printer Page SEgment), PTX (Printronix graphics file), PUZZ (8bit, X11 Puzzle), PUZZLE (8bit, X11 Puzzle), PXR (Pixar image, Photoshop), PZL (8bit, Unix Puzzle), QDV (8bit, Random Dot QDV file), RAST (Sun raster image), RL8, RLE (Utah Run-Length Encoded image file), SR (Sun Rasterfile), TARGA (Truevision Targa format), TRIF (Tiled Raster Interchange Format), VGA (OS/2 bitmap) -
11 вычислительная сеть
вычислительная сеть
Взаимосвязанная совокупность территориально рассредоточенных систем обработки данных, средств и (или) систем связи и передачи данных, обеспечивающая пользователям дистанционный доступ к ее ресурсам и коллективное использование этих ресурсов.
[ ГОСТ 24402-88]
вычислительная сеть
Информационная сеть, в состав которой входит вычислительное оборудование.
Компонентами вычислительной сети могут быть ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети. Эти компоненты составляют оконечное оборудование данных (ООД или DTE - Data Terminal Equipment). В качестве ООД могут выступать ЭВМ, принтеры, плоттеры и другое вычислительное, измерительное и исполнительное оборудование автоматических и автоматизированных систем. Собственно пересылка данных происходит с помощью сред и средств, объединяемых под названием среда передачи данных.
Подготовка данных, передаваемых или получаемых ООД от среды передачи данных, осуществляется функциональным блоком, называемым аппаратурой окончания канала данных (АКД или DCE - Data Circuit-Terminating Equipment). АКД может быть конструктивно отдельным или встроенным в ООД блоком. ООД и АКД вместе представляют собой станцию данных, которую часто называют узлом сети. Примером АКД может служить модем.
[И.П. Норенков, В.А. Трудоношин. Телекоммуникационные технологии и сети. МГТУ им. Н.Э.Баумана. Москва 1999]Вычислительные сети классифицируются по ряду признаков.
В зависимости от расстояний между связываемыми узлами различают вычислительные сети:
- территориальные - охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные и глобальные, имеющие соответственно региональные или глобальные масштабы; региональные сети иногда называют сетями MAN (Metropolitan Area Network), а общее англоязычное название для территориальных сетей - WAN (Wide Area Network);
- локальные (ЛВС) - охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1...2 км); локальные сети обозначают LAN (Local Area Network);
- корпоративные (масштаба предприятия) - совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или нескольких близко расположенных зданиях. Локальные и корпоративные вычислительные сети - основной вид вычислительных сетей, используемых в системах автоматизированного проектирования (САПР).
Особо выделяют единственную в своем роде глобальную сеть Internet (реализованная в ней информационная служба World Wide Web (WWW) переводится на русский язык как всемирная паутина); это сеть сетей со своей технологией. В Internet существует понятие интрасетей ( Intranet) - корпоративных сетей в рамках Internet.
Различают интегрированные сети, неинтегрированные сети и подсети.
Интегрированная вычислительная сеть (интерсеть) представляет собой взаимосвязанную совокупность многих вычислительных сетей, которые в интерсети называются подсетями.
В автоматизированных системах крупных предприятий подсети включают вычислительные средства отдельных проектных подразделений. Интерсети нужны для объединения таких подсетей, а также для объединения технических средств автоматизированных систем проектирования и производства в единую систему комплексной автоматизации ( CIM - Computer Integrated Manufacturing). Обычно интерсети приспособлены для различных видов связи: телефонии, электронной почты, передачи видеоинформации, цифровых данных и т.п., и в этом случае они называются сетями интегрального обслуживания.
Развитие интерсетей заключается в разработке средств сопряжения разнородных подсетей и стандартов для построения подсетей, изначально приспособленных к сопряжению.
[И.П. Норенков, В.А. Трудоношин. Телекоммуникационные технологии и сети. МГТУ им. Н.Э.Баумана. Москва 1999]Тематики
- сети вычислительные
- телеобработка данных и вычислительные сети
- электросвязь, основные понятия
EN
Computer network
Взаимосвязанная совокупность территориально рассредоточенных систем обработки данных, средств и (или) систем связи и передачи данных, обеспечивающая пользователям дистанционный доступ к ее ресурсам и коллективное использование этих ресурсов
Источник: ГОСТ 24402-88: Телеобработка данных и вычислительные сети. Термины и определения оригинал документа
Русско-английский словарь нормативно-технической терминологии > вычислительная сеть
-
12 ЛВС
1) Computers: LAN2) Engineering: local data-processing network (вычислительная), local-area network (вычислительная), short-haul network3) Information technology: локальная вычислительная сеть4) Sakhalin energy glossary: local area network (system permitting a number of PCs to share centralized software and files by means of a file server and hard wiring) (локальная вычислительная сеть), СМС5) Network technologies: local area network6) Sakhalin R: local area network (локальная вычислительная сеть)7) Sakhalin S: локальная вычислительная (компьютерная) сеть9) Security: local computer network10) Internet: Local Area Network (Соединённые вместе скоростным каналом компьютеры и другие устройства, расположенные на незначительном удалении один от другого (комната, здание, предприятие)) -
13 кабель для передачи данных
Cables: LAN cable, computer cable, data cableУниверсальный русско-английский словарь > кабель для передачи данных
-
14 компьютерный кабель
Cables: LAN cable, computer cable, data cableУниверсальный русско-английский словарь > компьютерный кабель
-
15 сеть передачи данных ЛВС и ГВС
Универсальный русско-английский словарь > сеть передачи данных ЛВС и ГВС
-
16 универсальный интерфейс
1. general interface2. general-purpose interface3. multimedia interfaceРусско-английский большой базовый словарь > универсальный интерфейс
-
17 сквозной проход
сквозной проход
Подфункция САР, функция Сквозной проход перемыкает неизмененные пакеты на стороне WAN-Data портала САР к стороне LAN-Pass. (МСЭ-Т J.191).
[ http://www.iks-media.ru/glossary/index.html?glossid=2400324]Тематики
- электросвязь, основные понятия
EN
Русско-английский словарь нормативно-технической терминологии > сквозной проход
См. также в других словарях:
Lan Krabue — ลานกระบือ Provinz: Kamphaeng Phet Fläche: 359,1 km² Einwohner: 41.297 (2005) Bev.dichte: 115 E./km² PLZ: 62170 … Deutsch Wikipedia
Data Center Ethernet — (also known as Converged Enhanced Ethernet) describes an enhanced Ethernet that will enable convergence of various applications in data centers (LAN, SAN, and HPC) onto a single interconnect technology.Today data centers deploy different networks … Wikipedia
LAN (disambiguation) — LAN may refer to:Computer term. *Local area network, a computer network covering a small local area, such as a home or office (for wireless, see WLAN). ** LAN party, social happening on a Local area network * Lancaster railway station, England;… … Wikipedia
Data center bridging — (DCB) refers to a set of enhancements to Ethernet local area networks for use in data center environments. Specifically, DCB goals are, for selected traffic, to eliminate loss due to queue overflow and to be able to allocate bandwidth on links.… … Wikipedia
Data transmission — Data transmission, digital transmission, or digital communications is the physical transfer of data (a digital bit stream) over a point to point or point to multipoint communication channel. Examples of such channels are copper wires, optical… … Wikipedia
Data acquisition — is the process of sampling signals that measure real world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems (abbreviated with the acronym DAS or… … Wikipedia
Data Mule — is an evocative term for a vehicle that physically carries a computer with storage between remote locations to effectively create a data communication link. A data mule is a special case of Sneakernet, where the data is automatically loaded and… … Wikipedia
Data conferencing — refers to a communication session among two or more participants sharing computer data in real time. Interaction and presentation devices such as a screen, keyboard, mouse, camera, etc. can be shared or be able to control each other computer. It… … Wikipedia
Data link layer — The OSI model 7 Application layer 6 Presentation layer 5 Session layer 4 Transport layer 3 Network layer 2 … Wikipedia
LAN-free backup — A LAN free backup is a backup of server data to a shared, central storage device without sending the data over the local area network (LAN). It is usually achieved by using a storage area network (SAN). Note that trivial backup to a dedicated,… … Wikipedia
Data netværk — Et data netværk er designet til at formidle digital eller analog information. I det følgende vil der mest blive fokuseret på digitale data netværk. Den digitale data information er typisk opdelt i bidder kaldet data pakker, data rammer (eng.… … Danske encyklopædi